

Page 1/23

Date 27.01.2006

| Supervisor: | M. Revellino – G.P. & M. – T.S.C. – Advanced Materials App. – tel. (0039) 011.00.75787   |
|-------------|------------------------------------------------------------------------------------------|
| Manager:    | G. Passalacqua – G.P. & M. – T.S.C. – A.M.A. – Materials – telephone (0039) 011.00.75792 |

**NOTE.** The present standard is partially in accordance with ISO standard 898–111999.

This Standard replaces IVECO STD. 18–0505 Part 2 ed. 4 dated 24.09.2001.

### 1 SUBJECT AND VALIDITY

1.1 Under the conditions of validity described in detail in IVECO STD 18–0505, the present standard establishes grades of strength, materials, mechanical properties, testing methods and marking for standard reliability screws and studs with  $d \le 39$  mm major diameter, and for grub screws with  $d \le 24$  mm major diameter.

Screws requiring special properties, e.g.: weldability, heat and corrosion strength, resistance to temperatures > 300  $^{\circ}$ C and < 50  $^{\circ}$ C or surface hardness higher than core hardness are excluded.

1.2 Mechanical properties specified in this Standard stand valid at ambient temperature. To use bolts and nuts properly not at ambient temperature, within 300 °C and –50 °C limits, take into account mechanical property variation as a function of temperature, specially as concerns resistance to temperatures between –20 and –50 °C.

For minimum values of rated load  $R_{p0,2}$  and of resilience at various temperatures, see **Table V**. For inspection requirements see IVECO STD. 18–0505 Enclosure 10, the 2nd and 3rd levels of quality depending on screws' grades of strength.

| Edition | Date                | Description of modifications                                                                                                                           | Group |
|---------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1       | 25.07.1985          |                                                                                                                                                        |       |
| 2       | 27.02.1989          | Replaced references 15–2610 P. 1 by 15–2603 and 15–2610 P. 2 and 15–2604 in Table II and STANDARDS QUOTED.                                             |       |
| 3       | 25.03.1999          | Completely revised.                                                                                                                                    | CFO   |
| 4       | 24.09.2001          | Table II notes, Table III and relevant notes modified.                                                                                                 |       |
| 5       | 11.05.2004          | Completely revised for updating. It was 18–0505 Part 2.                                                                                                |       |
| 6       | 27.01.2006          | Modified: Manager and Supervisor Dept. Added: Grade of Strength 4.6 to Tables I, II, III, V, XII and XV. IVECO STD. 18–0013 title in point 9 modified. |       |
|         | ANY HARD COPY IN YO | L<br>DUR POSSESSION SHOULD BE CONSIDERED NOT UP-TO-DATE. SEE RELEVANT WEB SITE FOR UP-TO-DATE DOCUMENT                                                 | -     |

PUBLISHED BY SATIZ - NORMAZIONE

# 2 DESIGNATION OF GRADES OF STRENGTH

Five grades of strength, identified by symbols consisting of two digits separated by a dot, are provided. The first digit represents a hundredth of ultimate tensile strength in N/mm<sup>2</sup>, and the other one represents the ratio, multiplied tenfold, between yield strength Rs or deviation from proportion Rp0.2 and ultimate tensile strength (see **Table I**).

Screws in classes 8.8, 10.9 and 12.9 shall be hardened and tempered.

|                            |                                                       | TABLE I                                                                           |                                |                  |
|----------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------|------------------|
| SCREW<br>STRENGTH<br>CLASS | ULTIMATE TENSILE<br>STRENGTH<br>( N/mm <sup>2</sup> ) | YIELDING STRENGTH RS<br>OR PROPORTION<br>DEVIATION RP0.2<br>( N/mm <sup>2</sup> ) | USE                            | MATERIAL<br>CODE |
| 4.6                        | 400                                                   | 240                                                                               | Light–duty<br>screws           | 00121            |
| 4.8 1                      | 400                                                   | 320                                                                               | Light–duty<br>screws           | 25105            |
| 5.8 2                      | 500                                                   | 400                                                                               | Low–strength<br>screws         | 25055            |
| 8.8                        | 800                                                   | 640                                                                               | Average–<br>strength<br>screws | 25056            |
| 10.9                       | 1000                                                  | 900                                                                               | High–strength<br>screws        | 25057            |
| 12.9 ★                     | 1200                                                  | 1080                                                                              | Top–strength<br>screws         | 25058            |

1 Replaces previous class 11H when the latter is specified for headed screws.

 $\bigcirc$  Use class **8.8** for screws with d > 16 mm major diameter.

 $\star$  Class not to be used for new designs.

Page 3/23 Date 27.01.2006

# 3 MATERIALS

Steels to be used shall comply with chemical and structural properties specified in **Table II**, which also provides for concerned strength classes, specifications for tempering check.

| STRENGTH                                          | MATERIAL AND<br>THERMAL        | MAX. 🗇<br>THREAD    | CHEMICAL COMPOSITION % LIMITS 4<br>(PRODUCT ANALYSIS) |              |              |            |           |            | TEMPERING<br>TEST<br>TEMPERATURE |      |      |      |      |      |          |
|---------------------------------------------------|--------------------------------|---------------------|-------------------------------------------------------|--------------|--------------|------------|-----------|------------|----------------------------------|------|------|------|------|------|----------|
|                                                   | TREATMENT                      |                     | С                                                     | Mn<br>min.   | Σ 1<br>min.  | Mo<br>min. | S<br>max. | P<br>max.  | AND LENGTH                       |      |      |      |      |      |          |
| <b>4.6 – 4.8</b> 5                                | Non-alloy or                   | 39                  | < 0.55                                                | -            |              |            | 0.06      | 0.05       |                                  |      |      |      |      |      |          |
| 5.8 5                                             | alloy steel                    | 39                  | $\leq$ 0.55                                           | 0.25         | _            | _          | - 0.06    |            | _                                |      |      |      |      |      |          |
| <b>9 0</b> 0                                      | Non-alloy or                   | 24                  | 0.28                                                  |              | -            |            |           |            | 440 ± 5°C                        |      |      |      |      |      |          |
| 8.8 2 6 alloy hardened<br>and tempered<br>steel ★ | 39                             | (0.19)<br>÷<br>0.50 | 0.45                                                  | 0.5<br>(0.3) |              | 0.04       | 0.04      | for 30 min |                                  |      |      |      |      |      |          |
| 10.9 2                                            | Alloy hardened<br>and tempered | 16                  | 0.28<br>(0.22)                                        | 0.45         | 0.5<br>(–)   | _          |           | 0.04       | 0.04                             | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 425 ±5°C |
| 10.5 🗠                                            | steel ★                        | 39                  | ÷<br>0.50                                             | 0.40         | 0.9<br>(0.5) |            | 0.04      | 0.04       | for 30 min                       |      |      |      |      |      |          |
| Alloy hardened                                    |                                | 18                  | 0.28                                                  |              | 0.9          | _          |           | 0.035      | 410 ±5°C<br>for 30 min           |      |      |      |      |      |          |
| <b>12.9</b> 3                                     | and tempered                   | and tempered 27     |                                                       | 0.45         | 1.1          | 0.15       | 0.035     |            |                                  |      |      |      |      |      |          |
|                                                   | steel ★                        | 39                  | 0.50                                                  |              | 1.4          | 0.15       |           |            |                                  |      |      |      |      |      |          |

TABLE II

 $\Box \Sigma$  is the sum of alloy component percentage values, and more exactly:

 $\Sigma = Cr + Ni + Mo + V + (Mn 0.8)$ . Addend (Mn 0.8) is to be considered only when positive.

Any change in chemical composition shall be authorised by Iveco Central Laboratory for Testing Materials.

3 Boron steels admitted for screws class **12.9** (B content = 0.0005 + 0.005%). Boron presence, together with manganese content  $\geq$  0.80% enables to reduce  $\Sigma$  content to 0.25 providing Mo  $\geq$  0.07%.

Any change in chemical composition shall be authorised by Iveco Central Laboratory for Testing Materials.

- 4 Lead steels are admitted to manufacture chip–forming machined screws, excluding class **12.9** screws; in this case lead content shall be: Pb  $\leq$  0.25% for class 10.9 and Pb  $\leq$  0.35% for the other classes.
- 5 Super cutting steels can be used; in this case sulphur and phosphorus contents shall be:  $S \le 0.34\%$  and  $P \le 0.11\%$ .
- **6** Super cutting steels can be used; in this case sulphur content shall be:  $S \le 0.13\%$ .
- Bar section size for screws obtained by chip–forming machining from hardened and tempered semi–finished product. This manufacturing method is admitted just for classes **8.8** and **10.9**.
- ★ Steel hardenability shall be sufficient to obtain in the threaded part, a core structure having approx. all-hardening 90% martensite (before tempering).
- ★★The difference between the average values of the three readings obtained by Vickers hardness tests, performed on screw before and after the second tempering (the latter one being performed under the required conditions), shall not exceed 20 Vickers' points.

# 4 MECHANICAL AND DECARBURIZATION PROPERTIES

# 4.1 Mechanical properties

See Table III.

### TABLE III

| PROPERTY                                                                     |     | STRENGTH CLASS |           |           |                                   |             |             |  |  |
|------------------------------------------------------------------------------|-----|----------------|-----------|-----------|-----------------------------------|-------------|-------------|--|--|
| FRUFERII                                                                     |     | 4.6            | 4.8       | 5.8       | 8.8                               | 10.9        | 12.9        |  |  |
| Ultimate tensile strength<br>R (N/mm <sup>2</sup> ) 1                        |     | 400            | 420 - 700 | 520 - 700 | 800 - 1040                        | 1040 – 1200 | 1220 – 1400 |  |  |
| Yielding strength Rs min. (N/mm <sup>2</sup> )                               |     | 240            | 340       | 420       | -                                 | -           | -           |  |  |
| Unit yelding load from proportional-<br>ity Rp 0.2 min. (N/mm <sup>2</sup> ) |     | -              | -         | -         | 640 (660)                         | 940         | 1100        |  |  |
| Ultimate elongation A min. (%)                                               |     | 22             | 14        | 10        | 12                                | 9           | 8           |  |  |
| KU impact strength min. (J)                                                  |     | _              | _         | _         | 30                                | 20          | 15          |  |  |
| Vickers hardness HV,F $\geq$ 9                                               | 8 N | 120 – 220      | 130 – 220 | 160 – 220 | 250 - 320                         | 320 - 370   | 370 – 420   |  |  |
|                                                                              | HRB | 67 – 95        | 71– 95    | 82 – 95   | _                                 | -           | -           |  |  |
| Rockwell hardness 3 HRC                                                      |     | -              | -         | -         | 22 – 32                           | 32 - 38     | 38 - 43     |  |  |
| Surface hardness HV 0,3 max.                                                 |     | -              | -         | -         | HV0.3 value obtained on core + 30 |             | n core + 30 |  |  |
| Unit test load Rcp (N/mm <sup>2</sup> )                                      |     | 225            | 310       | 380       | 580 (600)                         | 830         | 970         |  |  |
| Rcp / Rs or Rp 0.2 ratio min                                                 | l.  | 0.94           | 0.91      | 0.91      | 0.91                              | 0.88        | 0.88        |  |  |

 $\hfill \hfill Max.$  ultimate tensile strength values are given as an indication.

2 In case Rs yielding point can not be found, deviation from proportionality Rp 0.2 can be checked.

 $\ensuremath{\textcircled{3}}$  In case of dispute, Vickers hardness is decisive.

### 4.2 Decarburization

See Table IV.

### TABLE IV

| PROPERTY                                                    | STRENGTH CLASS  |      |      |  |  |
|-------------------------------------------------------------|-----------------|------|------|--|--|
| FROFERIT                                                    | 8.8             | 10.9 | 12.9 |  |  |
| Min. non-decarburized area height in thread, E 1            | 2/3 h3 3/4 h3   |      |      |  |  |
| Max. total decarburization depth in thread, G (mm)          | 0.015           |      |      |  |  |
| Max. global decarburization depth in thread root 1          | 1/10 h3 1/13 h3 |      |      |  |  |
| Global decarburization on on chip–forming machined surfaces | d Absent        |      |      |  |  |
| 1 h3 = thread depth in max. material conditions.            |                 |      |      |  |  |

#### 4.3 Surface coating and/or treatment specifications

Class 10.9 and 12.9 screws when pickled or electroplated, shall be then submitted to proper dehydrogenation treatment; dehydrogenation cycle shall be equal to that specified on the relevant process Standard.

#### 5 MECHANICAL PROPERTIES AT HIGH TEMPERATURE

**Table V** gives, by way of example, yielding strength Rs or proportionality deviation Rp0.2 values as a function of temperature.

These values, which show mechanical property reduction at high temperatures, shall not be taken as reference for qualification or testing.

| STRENGTH<br>CLASS | Yield strength Rs min. or proportionality deviation Rp 0.2 min. (N/mm <sup>2</sup> ) at the following temperatures: |                       |          |          |          |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------|----------|----------|----------|--|--|--|--|
| CLASS             | + 20 °C                                                                                                             | + 100 °C              | + 200 °C | + 250 °C | + 300 °C |  |  |  |  |
| 4.6               | To be defined                                                                                                       |                       |          |          |          |  |  |  |  |
| 4.8               | 340                                                                                                                 | 310                   | 270      | 250      | 230      |  |  |  |  |
| 5.8               | 420                                                                                                                 | 380                   | 335      | 310      | 285      |  |  |  |  |
| 8.8               | 640                                                                                                                 | 590                   | 540      | 510      | 480      |  |  |  |  |
| 10.9              | 940 875 790 745 7                                                                                                   |                       |          |          |          |  |  |  |  |
| 12.9              | 1100                                                                                                                | 1100 1020 925 875 825 |          |          |          |  |  |  |  |

#### TABLE V

| IVECO St | tandard |
|----------|---------|
|----------|---------|

# 18–0505 Enclosure 1

Page 6/23

Date 27.01.2006

### TEST PROGRAMMES

6

Table **VI** establishes decisive mechanical properties as concerns screw evaluation in two test programmes.

#### TABLE VI

|                                                |                                          |                 | TEST PROGRAMME |                     |     |                     |  |
|------------------------------------------------|------------------------------------------|-----------------|----------------|---------------------|-----|---------------------|--|
|                                                | TEST                                     |                 |                | Α                   | В   |                     |  |
| PROPERTY                                       | METHOD                                   |                 | STRENG         | THCLAS              | S   |                     |  |
|                                                | 1                                        |                 | 5.8            | 8.8<br>10.9<br>12.9 | 5.8 | 8.8<br>10.9<br>12.9 |  |
|                                                | Tensile strength test on specimen        | point 7.1       |                | •                   |     |                     |  |
| Ultimate tensile strength                      | Tensile strength test on screw           | point 7.2       |                |                     |     |                     |  |
| Yielding strength                              | Tensile strength test on specimen        | point 7.3       | •              | •                   |     |                     |  |
| Resistance to test load                        | Load test                                | point 7.4       |                |                     | •   | •                   |  |
| Elongation                                     | Tensile strength test on specimen        | point 7.5       | ●              | •                   |     |                     |  |
| Vickers hardness                               |                                          | I.S.<br>15–0102 |                |                     |     |                     |  |
| Rockwell hardness                              |                                          | I.S.<br>15–0108 | 0              | 0                   | 0   | 0                   |  |
| Ultimate tensile strength with oblique support | Tensile strength test on oblique support | point 7.4       |                |                     | •   | •                   |  |
| Impact strength                                | Impact strength test                     | point 7.5       |                | •                   |     |                     |  |
| Head toughness                                 | Head toughness test                      | point 7.6       | $\bigcirc$     |                     | 0   | 0                   |  |
| Decarburization                                | Micro or micro-hardness test             | point 7.7       |                | •                   |     | ●                   |  |
| Surface defects                                | Non-destructive test                     | point 7.7.3     | 0              | •                   | 0   |                     |  |
| Tensile strength                               | Tensile strength test                    | point 7.8       |                |                     |     |                     |  |
| Direction of grain                             | Microscopic test                         | point 7.9.1     |                |                     |     |                     |  |

1 In general, tensile strength test is performed on entire screw; specimen is used to found properties that cannot be obtained with sufficient approximation on entire screw, and in case of dispute on test performed on entire screw and in case of doubts.

#### 6.1 Programme A

This programme stands valid for screws with shank section smaller than resistant section, or for specimens obtained from screws having shank sections smaller than resistant section.

### 6.2 Programme B

This programme stands valid for screws having shank section higher than or equal to resistant section or for entirely threaded screws.

In any case, screws checked according to programme **B** shall pass programme **A** tests, provided the latter can be performed.

These two programmes are equivalent.

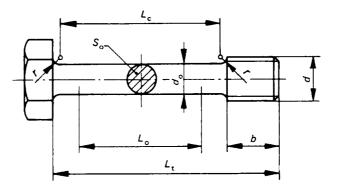
Test marked with  $\bullet$  is decisive to evaluate screw mechanical properties. Should purchaser require reduced approval tests, tests marked with  $\bullet$  can be replaced by tests identified by  $\blacksquare$ .

In case of doubt, tests identified by  $\bullet$  are decisive, providing they can be performed, e.g. short screws or screws with excessive major diameter.

In this case test identified by  $\blacksquare$  is decisive.

Tests identified by  $\bigcirc$  can be performed only after special agreements, these tests can furthermore be used instead of  $\bigcirc$  tests.

See point 7 for the number of tests to perform.


### 7 TEST METHOD

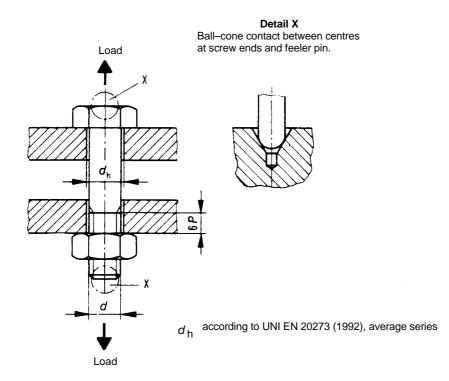
#### 7.1 Tensile strength test on specimen

Test is performed by proportional specimen in **Figure 1** (see IVECO STD. 15–0113), determining the following values:

- ultimate tensile strength R;
- yielding strength Rs;

- percentage elongation A = 100. 
$$\frac{L_u - L_o}{L_o}$$

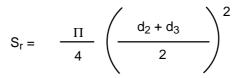





- d major diameter;
- do specimen diameter (tol. js 12);
- b thread length ( $\geq$  d);
- $L_o$  initial length between references (= 5 d<sub>o</sub>);
- $L_c$  specimen shank cylindrical section length ( $\ge L_o \div d_o$ );
- Lt total specimen length (=  $L_c + 2r + b$ );
- Lu length after breakage;
- S<sub>o</sub> initial gauged part section area;
- r radius (> 4 mm).

For hardened and tempered screws with thread diameter > 16 mm, shank diameter section reduction higher than 25 % ( $\approx$  44 % section) is not admitted for specimen preparation.

# 7.2 Tensile strength test on screw


This test shall be performed according to **Figure 2** on a test bed with self–centering clamps. Threaded element can be replaced with a nut having strength and tolerance class suitable for coupling.



#### FIGURE 2

For studs, a nut or a proper element tightened at finest thread root shall be used as head. Should stud threads have the same pitch, the element replacing the head shall be tightened on thread root side. Through holes D shall correspond to fine series

Threaded element in **Figure 2** shall have thread tolerance: 5H and hardness: HRC  $\geq$  50. To find ultimate strength, resistant section S<sub>r</sub>, given by the following ratio, is valid



where: d<sub>2</sub> pitch diameter,

d<sub>3</sub> minor diameter.

Ultimate strength value, specified in **Tables VII** and **VIII** for strength class being examined, shall be applied to screw.

In case of dispute, without performing tensile strength on specimen, check min. ultimate strength with actual size  $d_2$  and  $d_3$ , instead of  $S_r$  rated section values given in **Tables VII** and **VIII** since there can be section variations 10 % less than  $S_r$  resistant section.

During the test, a free and unladen thread length between 0.5 - 1 d shall be provided. Headed screws shall not break in the area between head and shank.

Page 9/23 Date 27.01.2006

| Mi                | TABLE VII   Min. ultimate strength values F <sub>m</sub> in N for coarse pitch ISO metric thread screws |                         |                |        |         |         |  |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------|---------|---------|--|--|--|--|
| NOMINAL<br>THREAD | PITCH                                                                                                   | RESISTANT<br>SECTION    | STRENGTH CLASS |        |         |         |  |  |  |  |
| DIAMETER<br>(mm)  |                                                                                                         | S <sub>r</sub><br>(mm²) | 5.8            | 8.8    | 10.9    | 12.9    |  |  |  |  |
| 1.6               | 0.35                                                                                                    | 1.27                    | 660            | 1020   | 1320    | 1550    |  |  |  |  |
| 2                 | 0.40                                                                                                    | 2.07                    | 1075           | 1650   | 2150    | 2530    |  |  |  |  |
| 2.5               | 0.45                                                                                                    | 3.39                    | 1765           | 2710   | 3525    | 4140    |  |  |  |  |
| 3                 | 0.5                                                                                                     | 5.03                    | 2620           | 4000   | 5230    | 6140    |  |  |  |  |
| 4                 | 0.7                                                                                                     | 8.78                    | 4570           | 7000   | 9130    | 10710   |  |  |  |  |
| 5                 | 0.8                                                                                                     | 14.2                    | 7380           | 11350  | 14800   | 17330   |  |  |  |  |
| 6                 | 1                                                                                                       | 20.1                    | 10400          | 16100  | 20900   | 24520   |  |  |  |  |
| 8                 | 1.25                                                                                                    | 36.6                    | 19000          | 29300  | 38100   | 44600   |  |  |  |  |
| 10                | 1.5                                                                                                     | 58.0                    | 30200          | 46400  | 60300   | 70800   |  |  |  |  |
| 12                | 1.75                                                                                                    | 84.3                    | 43800          | 67450  | 87700   | 103000  |  |  |  |  |
| 14                | 2                                                                                                       | 115                     | 59800          | 92000  | 120000  | 140000  |  |  |  |  |
| 16                | 2                                                                                                       | 157                     | 81600          | 125600 | 163000  | 192000  |  |  |  |  |
| 18                | 2.5                                                                                                     | 192                     | 99800          | 159400 | 200000  | 234000  |  |  |  |  |
| 20                | 2.5                                                                                                     | 245                     | 127000         | 203000 | 255000  | 299000  |  |  |  |  |
| 22                | 2.5                                                                                                     | 303                     | 158000         | 251150 | 315000  | 370000  |  |  |  |  |
| 24                | 3                                                                                                       | 353                     | 184000         | 293000 | 367000  | 431000  |  |  |  |  |
| 27                | 3                                                                                                       | 459                     | 239000         | 381000 | 477000  | 560000  |  |  |  |  |
| 30                | 3.5                                                                                                     | 561                     | 292000         | 466000 | 583000  | 684000  |  |  |  |  |
| 33                | 3.5                                                                                                     | 694                     | 361000         | 576000 | 722000  | 847000  |  |  |  |  |
| 36                | 4                                                                                                       | 817                     | 425000         | 678000 | 850000  | 997000  |  |  |  |  |
| 39                | 4                                                                                                       | 976                     | 508000         | 810000 | 1015000 | 1200000 |  |  |  |  |

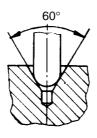
Page 10/23

|                                                                                                         | Otandard |                         |      |    | Enclosure 1 | Date 2   | Date 27.01.2006 |  |  |  |
|---------------------------------------------------------------------------------------------------------|----------|-------------------------|------|----|-------------|----------|-----------------|--|--|--|
| TABLE VIII<br>Min. ultimate strength values F <sub>m</sub> in N for fine pitch ISO metric thread screws |          |                         |      |    |             |          |                 |  |  |  |
| NOMINAL<br>THREAD                                                                                       | PITCH    | RESISTANT<br>SECTION    |      |    | STRENG      | TH CLASS |                 |  |  |  |
| DIAMETER<br>(mm)                                                                                        | (mm)     | S <sub>r</sub><br>(mm²) | 5.8  |    | 8.8         | 10.9     | 12.9            |  |  |  |
| 8                                                                                                       | 1        | 39.2                    | 2040 | 0  | 31350       | 40800    | 47800           |  |  |  |
| 10                                                                                                      | 1.25     | 61.2                    | 3180 | 0  | 49000       | 63600    | 74660           |  |  |  |
| 12                                                                                                      | 1.25     | 92.1                    | 4790 | 0  | 73700       | 95800    | 112360          |  |  |  |
| 14                                                                                                      | 1.5      | 125                     | 6500 | 0  | 100000      | 130000   | 152000          |  |  |  |
| 16                                                                                                      | 1.5      | 167                     | 8680 | 0  | 134000      | 174000   | 206000          |  |  |  |
| 18                                                                                                      | 1.5      | 216                     | 1120 | 00 | 179300      | 225000   | 264000          |  |  |  |
| 20                                                                                                      | 1.5      | 272                     | 1410 | 00 | 226000      | 283000   | 332000          |  |  |  |
| 22                                                                                                      | 1.5      | 333                     | 1730 | 00 | 276400      | 346000   | 406000          |  |  |  |
| 24                                                                                                      | 2        | 384                     | 2000 | 00 | 319000      | 399000   | 469000          |  |  |  |
| 27                                                                                                      | 2        | 496                     | 2580 | 00 | 412000      | 516000   | 605000          |  |  |  |
| 30                                                                                                      | 2        | 621                     | 3230 | 00 | 515000      | 646000   | 758000          |  |  |  |
| 33                                                                                                      | 2        | 761                     | 3960 | 00 | 632000      | 791000   | 928000          |  |  |  |
| 36                                                                                                      | 3        | 865                     | 4500 | 00 | 718000      | 900000   | 1055000         |  |  |  |
| 39                                                                                                      | 3        | 1030                    | 5360 | 00 | 855000      | 1071000  | 1260000         |  |  |  |

#### 7.3 Load test on screw

This test consists in stressing the screw according to methods shown in **Figure 2** and specified below, with unit test load provided for the class being tested for 10 s, without obtaining significant permanent elongation.

According to **Tables IX** and **X** test load shall be applied to screw axially, by a tensile strength testing machine with self–centering clamps, or by a device of the type shown in **Figure 3**, composed as follows:


- ring hole (1) where oil pressure is transformed into load on screw;

- pressure gauge (2) with 10 N indexing to read load;
- two dial gauges (3) to read elongation.

| IVECO Standard | 18–0505<br>Enclosure 1 | Page<br>Date | 11/23<br>27.01.2006 |
|----------------|------------------------|--------------|---------------------|
|                |                        |              |                     |
|                |                        |              |                     |
|                |                        |              |                     |
|                |                        |              |                     |
|                |                        |              |                     |
| From hand pump |                        | l            |                     |
|                |                        |              |                     |
|                |                        |              |                     |
| 3              | 3                      |              |                     |
|                | 1                      |              |                     |
| FIG            | IRF 3                  |              |                     |



Free thread length, non–engaged, shall be between 0.5 d and d. Through holes D shall correspond to fine series. 60° centres shall be provided at screw ends (see **Figure 4**). Before and after test load application, screw length shall be checked by a ball feeler reading device.



**FIGURE 4** 

Device error hall be less than or equal to 5  $\mu m.$  Other length reading methods are admitted providing not exceeding the above error.

For studs, a nut or a proper element tightened at finest thread root shall be used as head. Should stud threads have the same pitch, the element replacing the head shall be tightened on thread root side. Unit test load for stud screws is that corresponding to less resistant section thread diameter.

| IVECO S | Standard |
|---------|----------|
|---------|----------|

Date

In case of dispute, before passing to programme A, check min. ultimate strength with actual size d<sub>2</sub> and d<sub>3</sub>, instead of S<sub>r</sub> rated section values given in **Tables IX** and **X** since there can be section variations 10 % less than Sr resistant section.

### TABLE IX

#### Test load values in N for coarse pitch ISO metric thread

| NOMINAL<br>THREAD | PITCH | RESISTANT<br>SECTION    |        |        |        |        |
|-------------------|-------|-------------------------|--------|--------|--------|--------|
| DIAMETER<br>(mm)  | (mm)  | S <sub>r</sub><br>(mm²) | 5.8    | 8.8    | 10.9   | 12.9   |
| 1.6               | 0.35  | 1.27                    | 485    | 740    | 1055   | 1230   |
| 2                 | 0.40  | 2.07                    | 785    | 1200   | 1720   | 2010   |
| 2.5               | 0.45  | 3.39                    | 1290   | 1965   | 2815   | 3290   |
| 3                 | 0.5   | 5.03                    | 1910   | 2920   | 4180   | 4880   |
| 4                 | 0.7   | 8.78                    | 3340   | 5100   | 7290   | 8520   |
| 5                 | 0.8   | 14.2                    | 5400   | 8230   | 11800  | 13800  |
| 6                 | 1     | 20.1                    | 7640   | 11660  | 16700  | 19500  |
| 8                 | 1.25  | 36.6                    | 13900  | 21200  | 30400  | 35500  |
| 10                | 1.5   | 58.0                    | 22000  | 33700  | 48100  | 56300  |
| 12                | 1.75  | 84.3                    | 32000  | 48950  | 70000  | 81800  |
| 14                | 2     | 115                     | 43700  | 66700  | 95500  | 111600 |
| 16                | 2     | 157                     | 59700  | 91000  | 130300 | 152300 |
| 18                | 2.5   | 192                     | 73000  | 115200 | 159400 | 186200 |
| 20                | 2.5   | 245                     | 93100  | 147000 | 203400 | 237700 |
| 22                | 2.5   | 303                     | 115000 | 182000 | 251500 | 294000 |
| 24                | 3     | 353                     | 134000 | 212000 | 293000 | 342400 |
| 27                | 3     | 459                     | 174000 | 275400 | 381000 | 445000 |
| 30                | 3.5   | 561                     | 213000 | 337000 | 465700 | 544000 |
| 33                | 3.5   | 694                     | 264000 | 416400 | 576000 | 673000 |
| 36                | 4     | 817                     | 310000 | 490000 | 678000 | 792500 |
| 39                | 4     | 976                     | 371000 | 585600 | 810000 | 947000 |

Page 13/23 Date 27.01.2006

| TABLE X<br>Test load values in N for fine pitch ISO metric thread |       |                         |                |        |        |        |  |  |  |
|-------------------------------------------------------------------|-------|-------------------------|----------------|--------|--------|--------|--|--|--|
| NOMINAL<br>THREAD                                                 | PITCH | RESISTANT<br>SECTION    | STRENGTH CLASS |        |        |        |  |  |  |
| DIAMETER<br>(mm)                                                  | (mm)  | S <sub>r</sub><br>(mm²) | 5.8            | 8.8    | 10.9   | 12.9   |  |  |  |
| 8                                                                 | 1     | 39.2                    | 14900          | 22700  | 32500  | 38000  |  |  |  |
| 10                                                                | 1.25  | 61.2                    | 23300          | 35500  | 50800  | 59400  |  |  |  |
| 12                                                                | 1.25  | 92.1                    | 35000          | 53400  | 76400  | 89300  |  |  |  |
| 14                                                                | 1.5   | 125                     | 47500          | 72500  | 103800 | 121300 |  |  |  |
| 16                                                                | 1.5   | 167                     | 63500          | 96900  | 138600 | 162000 |  |  |  |
| 18                                                                | 1.5   | 216                     | 82100          | 129600 | 179300 | 209500 |  |  |  |
| 20                                                                | 1.5   | 272                     | 103000         | 163000 | 226000 | 264000 |  |  |  |
| 22                                                                | 1.5   | 333                     | 126000         | 200000 | 276400 | 323000 |  |  |  |
| 24                                                                | 2     | 384                     | 146000         | 230000 | 319000 | 372500 |  |  |  |
| 27                                                                | 2     | 496                     | 188000         | 298000 | 412000 | 481000 |  |  |  |
| 30                                                                | 2     | 621                     | 236000         | 373000 | 515000 | 602400 |  |  |  |
| 33                                                                | 2     | 761                     | 289000         | 457000 | 632000 | 738000 |  |  |  |
| 36                                                                | 3     | 865                     | 329000         | 519000 | 718000 | 839000 |  |  |  |
| 39                                                                | 3     | 1030                    | 391000         | 618000 | 855000 | 999000 |  |  |  |

#### 7.4 **Tensile strength test with oblique support**

Screw is fitted in tensile strength testing device shown in Figure 5.

Tensile strength test with oblique support shall be performed according to methods shown in **Figure 5** and in **Table XI**, where oblique support angle is specified.

Screw shall be stressed with axial load until breaking. Unless otherwise specified on drawing, breaking shall never take place in the area between head and shank. Tensile strength test with oblique support on studs shall be performed with device shown in **Figure 6**, with methods described below and according to **Table XI**.

Should stud screw have a coarse pitch and a fine pitch, device in **Figure 6** shall be applied on coarse pitch part, leaving free a thread section equal to d. On the fine pitch part a nut shall be applied, tight-ened down to thread bottom.

Should stud screw threads have the same pitch, device in **Figure 6** shall be applied on root side. Threaded element shall always be tightened by hand, although root thread is increased.

| IVECO Standard |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  |                                                                                           | 18–050<br>Enclosure     |                                                                                                                         | 14/23<br>27.01.2006 |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------|-------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|
|                | Load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | HRC 50 r |                  |                                                                                           |                         | D = 45 mm for screws of D = 90 mm for screws of D = 6                                                                   | up to 18 mm         |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  | TABLE                                                                                     | : YI                    |                                                                                                                         |                     |  |  |
|                | Din                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nensions | s for ten        |                                                                                           | est device with o       | blique support                                                                                                          |                     |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  | ANGLE $\alpha \pm 30'$ ( <b>(</b> )                                                       |                         |                                                                                                                         |                     |  |  |
| DIAM           | NOMINAL THREAD<br>DIAMETER<br><i>d</i><br>(mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          | <b>r</b><br>(mm) | FOR SCREWS WITH $\geq$ 2 <b>d</b><br>NOMINAL LENGTH<br>FOR ELONGATION<br>STRENGTH CLASSES |                         | FOR SCREWS WITH < 2 <b>d</b><br>NOMINAL LENGTH<br>OR WITH ENTIRELY THREADED<br>SHANK FOR ELONGATION<br>STRENGTH CLASSES |                     |  |  |
| over           | up to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -        |                  | $\geq$ 10 %                                                                               | $\geq$ 10 % < 10 %      |                                                                                                                         | < 10 %              |  |  |
|                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.7      | 0.5              |                                                                                           |                         |                                                                                                                         |                     |  |  |
| 6              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.8      | 0.8              | 10°                                                                                       | 6°                      | 6°                                                                                                                      | 4°                  |  |  |
| 12             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.3      | 1.6              |                                                                                           |                         |                                                                                                                         |                     |  |  |
| 20             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6      | 3.2              | 6°                                                                                        | <b>4</b> °              | <b>4</b> °                                                                                                              | 4°                  |  |  |
| (▲)            | For special s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | shape so | rew (e.g.        | : rod screws) ar                                                                          | ngle $lpha$ shall be sp | ecified on drawing.                                                                                                     |                     |  |  |
|                | Tolerance on hole d – c shall be H8; on threaded element it shall be 5H.<br>Minimum tensile strength values provided for the corresponding strength class, referred to resistant<br>section S <sub>r</sub> (see <b>Tables VII</b> and <b>VIII</b> ) shall be obtained before breaking.<br>For entirely threaded screws, conditions specified in this test are obtained when breaking starts in<br>the threaded part and then enters in the transition length.<br>This test shall not be performed on countersunk head screws.<br>Should hardness replace a tensile strength test (see point 4.1), it shall be performed on a cross sec-<br>tion set at a distance from end $\geq$ d and at 0.25 from external surface.<br>Rockwell hardness test shall be performed with scales B and C.<br>For any other information not provided in this Standard, see IVECO STD. 15–0102 for Vickers hard-<br>ness and IVECO STD. 15–0108 for Rockwell hardness. In case of doubt, Vickers hardness is<br>decisive. |          |                  |                                                                                           |                         |                                                                                                                         |                     |  |  |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                  | PUBLISHED BY SATIZ                                                                        | - NORMAZIONE            |                                                                                                                         |                     |  |  |

# 7.5 Impact strength test

This test shall be performed in compliance with Charpy, with U or key hole specimen at ambient temperature. Specimen shall be obtained as much as possible next to screw surface, in axial direction. Impact strength test shall be only performed on screw with > 12 mm diameter. See IVECO STD. 15-0130 for test methods.

#### 7.6 Head toughness test

This test shall be performed according to methods shown in Figure 7 and Table XII.

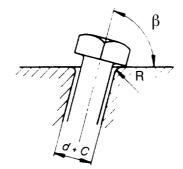



FIGURE 7

TABLE XII

| STRENGTH CLASS | 4.6 | 4.8 | 5.8 | 8.8 | 10.9 | 12.9 |
|----------------|-----|-----|-----|-----|------|------|
| Angle $\beta$  | 60° | 80° |     |     |      |      |

Screw head shall be bent by  $90^{\circ} - \beta$  by hammer without breaking or cracks in the area between shank and head. See **Table XI** for <u>c</u> and <u>r</u> dimensions.

This test shall not be applied to countersunk head screws. Test on entirely threaded screws is positive when breaking or cracks appear on first thread, providing head is not completely removed.

#### 7.7 Decarburization check

Two decarburization reading methods are provided:

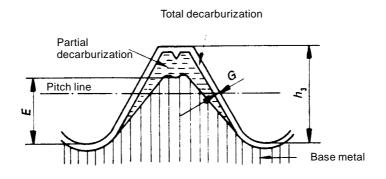
- microscopic method, to be used as current method;
- microhardness method, to be mainly used in case of dispute.

### Date 27.01.2006

# 7.7.1 Microscopic method

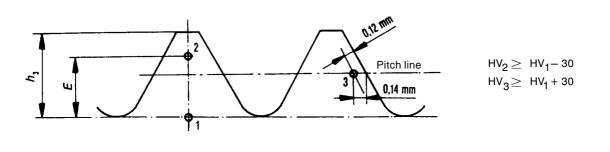
Decarburization shall be checked on a longitudinal screw surface on the threaded part, as shown in **Figure 8**.

Surface shall be at a distance from screw axis equal to 1/10 thread diameter.


Sample to examine shall be prepared according to proper metallographic practice and etched with 4% nital.

Decarburization shall be read by micrometric eyepiece, or by direct reading on ground pane of micrographic room.

Magnification shall be 100 X.


Non–decarburized area depth (E) shall be at least  $2/3 h_3 - 3/4 h_3$ , ( $h_3$  = thread height in maximum material conditions), according to strength classes and specifications contained in relevant Standards, which specify total admitted decarburization depth read in correspondance with pitch diameter (0 to 0.015 mm) (G) (see **Figures 8** and **9**).

Total or partial decarburization depth at thread root can be  $1/10 h_3 - 1/13 h_3$  always according to specifications contained in relevant Standards (see **Table XIII**).



 ${\rm h}_3~{\rm thread}$  depth in maximum material conditions

### FIGURE 8



**FIGURE 9** 

Min. specified non–decarburization area depth (E) and max. total or partial decarburization depth in thread root have been summed up as a function of pitch in **Table XII**.

| <b>IVECO</b> St | andard |
|-----------------|--------|
|-----------------|--------|

|       |                |                    | ABLE XIII<br>carburization value | S                     |                                            |
|-------|----------------|--------------------|----------------------------------|-----------------------|--------------------------------------------|
|       |                |                    | ILUES<br>nm)                     | DECARBURIZ<br>IN THRE | OR PARTIAL<br>ATION DEPTH<br>AD ROOT<br>m) |
| PITCH | h <sub>3</sub> | 2/3 h <sub>3</sub> | 3/4 h <sub>3</sub>               | 1/10 h <sub>3</sub>   | 1/13 h <sub>3</sub>                        |
| (mm)  | (mm)           |                    | SCREW STRE                       | NGTH CLASSES          |                                            |
|       |                | 8.8                | 10.9 – 12.9                      | 8.8                   | 10.9 – 12.9                                |
|       |                | 22H                | 33H                              | 22H                   | 33H                                        |
| 0.35  | 0.215          | 0.143              | 0.161                            | 0.021                 | 0.016                                      |
| 0.4   | 0.245          | 0.164              | 0.184                            | 0.024                 | 0.019                                      |
| 0.45  | 0.276          | 0.184              | 0.207                            | 0.027                 | 0.021                                      |
| 0.5   | 0.307          | 0.204              | 0.230                            | 0.031                 | 0.023                                      |
| 0.6   | 0.368          | 0.245              | 0.276                            | 0.037                 | 0.028                                      |
| 0.7   | 0.429          | 0.286              | 0.322                            | 0.043                 | 0.033                                      |
| 0.75  | 0.460          | 0.306              | 0.345                            | 0.046                 | 0.035                                      |
| 0.8   | 0.491          | 0.327              | 0.368                            | 0.049                 | 0.038                                      |
| 1     | 0.613          | 0.409              | 0.460                            | 0.061                 | 0.047                                      |
| 1.25  | 0.767          | 0.511              | 0.575                            | 0.077                 | 0.059                                      |
| 1.5   | 0.920          | 0.613              | 0.690                            | 0.092                 | 0.071                                      |
| 1.75  | 1.073          | 0.716              | 0.805                            | 0.107                 | 0.082                                      |
| 2     | 1.227          | 0.818              | 0.920                            | 0.123                 | 0.094                                      |
| 2.5   | 1.534          | 1.022              | 1.150                            | 0.153                 | 0.118                                      |
| 3     | 1.840          | 1.227              | 1.380                            | 0.184                 | 0.141                                      |
| 3.5   | 2.147          | 1.431              | 1.610                            | 0.215                 | 0.165                                      |
| 4     | 2.454          | 1.636              | 1.840                            | 0.245                 | 0.189                                      |
| 4.5   | 2.760          | 1.840              | 2.070                            | 0.276                 | 0.212                                      |
| 5     | 3.067          | 2.044              | 2.300                            | 0.307                 | 0.236                                      |
| 5.5   | 3.373          | 2.249              | 2.530                            | 0.337                 | 0.259                                      |
| 6     | 3.680          | 2.453              | 2.760                            | 0.368                 | 0.283                                      |



# 7.7.2 Microhardness method (for $\geq$ 1mm pitches)

Sample is prepared as described in point 7.7.1. Nital etching can be omitted.

HV0.3 hardness in tree positions (1, 2 and 3) is found as shown in **Figure 9** where 1 and 2 are on thread axis angle and 3 shall be found at pitch diameter level at 0.012 mm from thread surface or near it in the point where positions 1 and 2 have been found.

Decarburization decrease lower than 30 HV0.3 points found between 1 and 2 is not admitted; i.e.: Vickers hardness read on position 2 shall be equal to or higher than that read on position 1 increased by 30 Vickers points.

Hardness on screws rolled after hardening and tempering shall not be found on thread since, due to work hardening, values exceeding 30 Vickers points (allowed as recarburization limits) can be found.

Hardness shall be read on a shank section not rolled and not machined after hardening and tempering. Bear in mind that a previous decarburization may be hiden by cold work hardening.

# 7.7.3 Surface defect examination

To find surface defects, magnetic powder or penetrant fluid methods are used. In case of doubt, decide the type and depth of surface defects and perform a section normal to thread and read defects by a micrometric eyepiece.

# 7.8 **Tensile strength** (for 10.9 and 12.9 screws)

Stress 8 screws up to loads shown in **Table XIV**, and tighten them with a nut of equivalent class, on stiff steel rings treated with HRC 41 – 45 hardness and flat, parallel and ground surfaces. Use wrenches with  $\pm$  5% accuracy; tightening torque shall be established each time tightening a screw on dynamometer.

Screw thread and supporting surfaces shall be greased with graphite oil.

Tightened screws shall be put in thermostat at  $-20 \pm 1$  °C for 24 h; no breakage shall be found at the end of the test.

| Thread<br>diameter | Pitch<br>(mm) | Screw resistant<br>section<br>S <sub>r</sub> | <b>LOAD</b><br>(N) 1 |       |  |
|--------------------|---------------|----------------------------------------------|----------------------|-------|--|
| (mm)               | ()            | (mm <sup>2</sup> )                           | 10.9                 | 12.9  |  |
| 7                  | 1             | 28.9                                         | 18200                | 21800 |  |
| 8                  | 1.25          | 36.6                                         | 23100                | 27700 |  |
| 8                  | 1             | 39.2                                         | 24700                | 29600 |  |
| 9                  | 1.25          | 48.1                                         | 30300                | 36400 |  |
| 9                  | 1             | 51                                           | 32100                | 38600 |  |
| 10                 | 1.5           | 58                                           | 36500                | 43800 |  |
| 10                 | 1.25          | 61.2                                         | 38600                | 46300 |  |
| 10                 | 1             | 64.5                                         | 40600                | 48800 |  |

### TABLE XIV – Tensile strength test loads

Should non-threaded shank diameter be smaller than resistant section diameter, loads shall be reduced according to section variation.

(continues 🖃)

18–0505 Enclosure 1

Page 19/23 Date 27.01.2006

(⊯ continued)

| Thread<br>diameter | Pitch | Screw resistant<br>section                  | <b>LOAD</b><br>(N) 1 |       |  |
|--------------------|-------|---------------------------------------------|----------------------|-------|--|
| (mm)               | (mm)  | <b>S</b> <sub>r</sub><br>(mm <sup>2</sup> ) | 10.9                 | 12.9  |  |
| 12                 | 1.75  | 84.3                                        | 53100                | 6370  |  |
| 12                 | 1.5   | 88.1                                        | 55500                | 6660  |  |
| 12                 | 1.25  | 92.1                                        | 58000                | 6960  |  |
| 14                 | 2     | 115                                         | 72400                | 8690  |  |
| 14                 | 1.5   | 125                                         | 78800                | 9450  |  |
| 16                 | 2     | 157                                         | 98900                | 11900 |  |
| 16                 | 1.5   | 167                                         | 105000               | 12600 |  |
| 18                 | 2.5   | 192                                         | 121000               | 14500 |  |
| 18                 | 1.5   | 216                                         | 136000               | 16300 |  |
| 20                 | 2.5   | 245                                         | 154000               | 18500 |  |
| 20                 | 1.5   | 272                                         | 171000               | 20600 |  |
| 22                 | 2.5   | 303                                         | 191000               | 22900 |  |
| 22                 | 1.5   | 333                                         | 210000               | 25200 |  |
| 24                 | 3     | 353                                         | 222000               | 26700 |  |
| 24                 | 2     | 384                                         | 242000               | 29000 |  |
| 27                 | 3     | 459                                         | 289000               | 34700 |  |
| 27                 | 2     | 496                                         | 312000               | 37500 |  |
| 30                 | 3.5   | 561                                         | 353000               | 42400 |  |
| 30                 | 2     | 621                                         | 391000               | 46900 |  |
| 33                 | 3.5   | 694                                         | 437000               | 52500 |  |
| 33                 | 2     | 761                                         | 479000               | 57500 |  |
| 36                 | 4     | 817                                         | 515000               | 61800 |  |
| 36                 | 3     | 865                                         | 545000               | 65400 |  |
| 39                 | 4     | 976                                         | 615000               | 73800 |  |
| 39                 | 3     | 1030                                        | 649000               | 77900 |  |

Should non-threaded shank diameter be smaller than resistant section diameter, loads shall be reduced according to section variation.



Date 27.01.2006

#### 7.9 **Direction of grain** (for screws)

For headed screws the direction of grain, especially in the joining area between the head and the shank, shall be regular and without double folds and interruptions.

A regular direction means that the direction itself is continuous and concave compared to the part's axis (as an example see **Figure 10**.

Partial interruption of external grains is admitted in case of machining of the underhead surface. For threadings the direction of grain corresponding to threads shall be continuous and shall follow the general outline of the thread itself, with maximum density at the thread–base (see **Figure 11**).

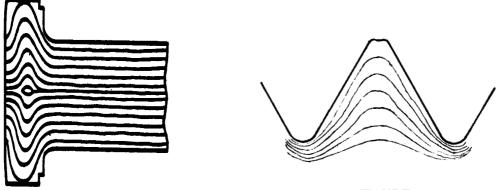



FIGURE 10

**FIGURE 11** 

#### 7.9.1 Microscopic test

This test shall be carried out along a longitudinal plane passing through the axis, as described in IVECO STD. 15–0210.

#### 8 MARKING

Marking consists of the symbol of grade of strength and of the trademark, with the exception of studs which have an alternative countersign (see point 8.2.3).

#### 8.1 Symbols of grades of strength

The marking of the symbol of grades of strength is shown in Table XV.

#### TABLE XV

| STRENGTH CLASS                                                    | 4.6 | 4.8 | 5.8 | 8.8 | 10.9 | 12.9 |  |  |
|-------------------------------------------------------------------|-----|-----|-----|-----|------|------|--|--|
| SYMBOL 🔾                                                          | 4.6 | 4.8 | 5.8 | 8.8 | 10.9 | 12.9 |  |  |
| The point between the numbers indicating the grade can be emitted |     |     |     |     |      |      |  |  |

The point between the numbers indicating the grade can be omitted

#### 8.2 Identification

#### 8.2.1 Hexagon-head or six-lobe screws

Hexagon-head or six-lobe screws (including screws with flanges) shall be marked with manufacturer's trademark and strength class shown in **Table XV**.

Marking is compulsory for every strength class and is preferably made (printing or embossing) on the head top or printed on the head side (see **Figure 12**). Flanged screws shall be marked on flanges if marking on the head top cannot be made.

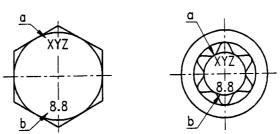
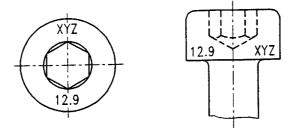
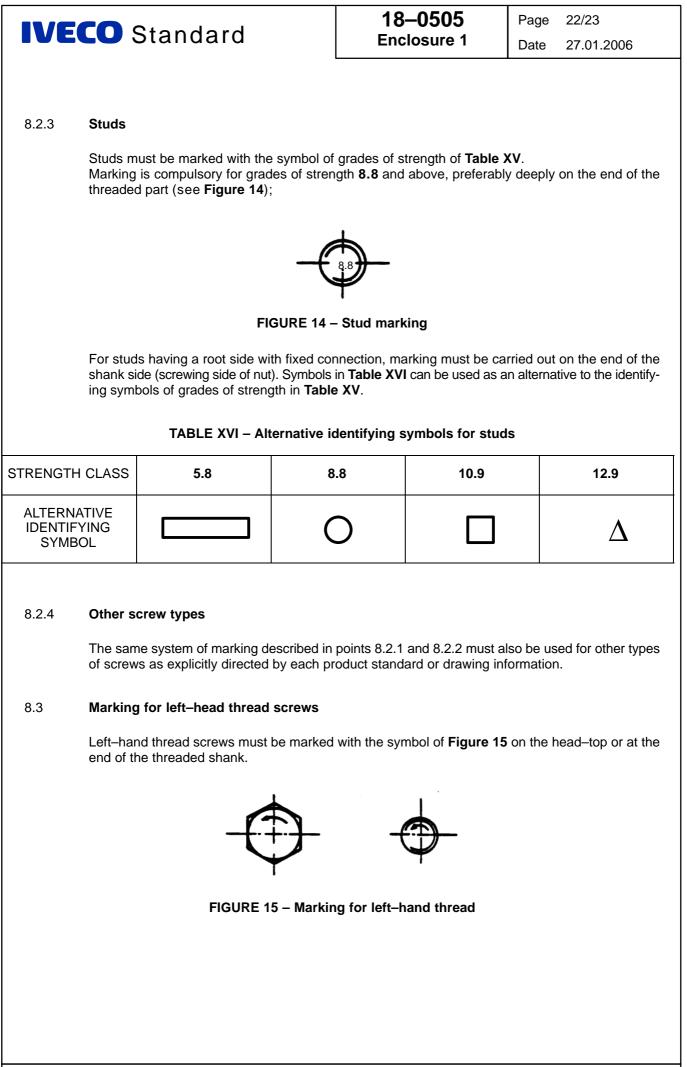



FIGURE 12 – Examples of marking for hexagon-head or six-lobe screws


#### Key

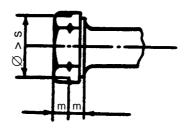
- a Manufacturer's trademark
- b Strength class

#### 8.2.2 Socket head screws with hexagon or six-lobe slot


Socket head screws with hexagon or six–lobe slot must be marked with manufacturer's trademark and symbol of grades of strength of **Table XV**.

Marking is compulsory for grades of strength 8.8 and higher, preferably made (printing or embossing) on the head top or printed on cylindrical head surface deeply (see **Figure 13**).




#### FIGURE 13 – Examples of marking for cylinder-head socket head screws with hexagon or six-lobe slot

The clockwise marking system according to IVECO STD. 18–0505 Enclosure 3 corresponding to nuts can be used as alternative system for cylindrical socket head screws with small diameters.



PUBLISHED BY SATIZ - NORMAZIONE

For left–hand thread hexagon–head screws, scoring the corners of faces of the hexagon head as shown in **Figure 16** can be used as an alternative system.



s = width across flats

#### FIGURE 16 – Alternative marking for left-hand thread

#### 8.3.1 Choice of symbol

Manufacturer chooses the symbols in accordance with points 8.1 to 8.3.

#### 8.4 Trade–mark

Trade–mark (producer's marking) is compulsory for all screws that must bear the mark of a grade of strength symbol.

#### 9 ENGINEERING RELEASE

General requirements given in IVECO STD. 18–0010 "Quality of supplies" are valid. Unless otherwise specified or agreed upon, Supplier shall submit for engineering release 20 samples of the required product, on which the properties required by this Specification will be systematically checked.

The above mentioned samples must always be accompanied by a "Product Identification Sheet" (see IVECO STD. 18–0015) and by the "Product Quality Certification" (see IVECO STD. 18–0013) filled in by the Supplier with reference to the properties of this Specification and any other specifications on drawing.

#### 10 QUALITY OF SUPPLY

The product supplied must comply with the present Specification, with drawing and with the sample on which engineering release has been given.

Supply shall be performed according to IVECO STD. 18–0010 "Quality of supplies" using the forms specified in IVECO STD. 18–0013, 18–0015.

#### STANDARDS QUOTED

IVECO STD.: 15–0102, 15–0108, 15–0113, 15–0130, 15–0210, 18–0010, 18–0013, 18–0015, 18–0505, 18–0505 Enclosure 2, 18–0505 Enclosure 3, 18–0505 Enclosure 10.

**UNI EN:** 20273 (1992).

**ISO:** 898–1/1988.